Copied to
clipboard

G = C23⋊D14order 224 = 25·7

1st semidirect product of C23 and D14 acting via D14/C7=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D145D4, C231D14, C72C22≀C2, (C2×D4)⋊3D7, (C2×C4)⋊2D14, (C2×C14)⋊2D4, (D4×C14)⋊8C2, C2.25(D4×D7), D14⋊C414C2, (C2×C28)⋊7C22, C14.49(C2×D4), (C23×D7)⋊2C2, C222(C7⋊D4), C23.D710C2, (C2×C14).52C23, (C22×C14)⋊3C22, (C2×Dic7)⋊2C22, C22.59(C22×D7), (C22×D7).25C22, (C2×C7⋊D4)⋊4C2, C2.13(C2×C7⋊D4), SmallGroup(224,132)

Series: Derived Chief Lower central Upper central

C1C2×C14 — C23⋊D14
C1C7C14C2×C14C22×D7C23×D7 — C23⋊D14
C7C2×C14 — C23⋊D14
C1C22C2×D4

Generators and relations for C23⋊D14
 G = < a,b,c,d,e | a2=b2=c2=d14=e2=1, ab=ba, dad-1=ac=ca, eae=abc, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede=d-1 >

Subgroups: 638 in 130 conjugacy classes, 37 normal (17 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C7, C2×C4, C2×C4, D4, C23, C23, D7, C14, C14, C14, C22⋊C4, C2×D4, C2×D4, C24, Dic7, C28, D14, D14, C2×C14, C2×C14, C2×C14, C22≀C2, C2×Dic7, C7⋊D4, C2×C28, C7×D4, C22×D7, C22×D7, C22×C14, D14⋊C4, C23.D7, C2×C7⋊D4, D4×C14, C23×D7, C23⋊D14
Quotients: C1, C2, C22, D4, C23, D7, C2×D4, D14, C22≀C2, C7⋊D4, C22×D7, D4×D7, C2×C7⋊D4, C23⋊D14

Smallest permutation representation of C23⋊D14
On 56 points
Generators in S56
(1 56)(2 27)(3 44)(4 15)(5 46)(6 17)(7 48)(8 19)(9 50)(10 21)(11 52)(12 23)(13 54)(14 25)(16 40)(18 42)(20 30)(22 32)(24 34)(26 36)(28 38)(29 49)(31 51)(33 53)(35 55)(37 43)(39 45)(41 47)
(1 29)(2 30)(3 31)(4 32)(5 33)(6 34)(7 35)(8 36)(9 37)(10 38)(11 39)(12 40)(13 41)(14 42)(15 22)(16 23)(17 24)(18 25)(19 26)(20 27)(21 28)(43 50)(44 51)(45 52)(46 53)(47 54)(48 55)(49 56)
(1 36)(2 37)(3 38)(4 39)(5 40)(6 41)(7 42)(8 29)(9 30)(10 31)(11 32)(12 33)(13 34)(14 35)(15 45)(16 46)(17 47)(18 48)(19 49)(20 50)(21 51)(22 52)(23 53)(24 54)(25 55)(26 56)(27 43)(28 44)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14)(15 16 17 18 19 20 21 22 23 24 25 26 27 28)(29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56)
(1 35)(2 34)(3 33)(4 32)(5 31)(6 30)(7 29)(8 42)(9 41)(10 40)(11 39)(12 38)(13 37)(14 36)(15 45)(16 44)(17 43)(18 56)(19 55)(20 54)(21 53)(22 52)(23 51)(24 50)(25 49)(26 48)(27 47)(28 46)

G:=sub<Sym(56)| (1,56)(2,27)(3,44)(4,15)(5,46)(6,17)(7,48)(8,19)(9,50)(10,21)(11,52)(12,23)(13,54)(14,25)(16,40)(18,42)(20,30)(22,32)(24,34)(26,36)(28,38)(29,49)(31,51)(33,53)(35,55)(37,43)(39,45)(41,47), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,43)(28,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,45)(16,44)(17,43)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46)>;

G:=Group( (1,56)(2,27)(3,44)(4,15)(5,46)(6,17)(7,48)(8,19)(9,50)(10,21)(11,52)(12,23)(13,54)(14,25)(16,40)(18,42)(20,30)(22,32)(24,34)(26,36)(28,38)(29,49)(31,51)(33,53)(35,55)(37,43)(39,45)(41,47), (1,29)(2,30)(3,31)(4,32)(5,33)(6,34)(7,35)(8,36)(9,37)(10,38)(11,39)(12,40)(13,41)(14,42)(15,22)(16,23)(17,24)(18,25)(19,26)(20,27)(21,28)(43,50)(44,51)(45,52)(46,53)(47,54)(48,55)(49,56), (1,36)(2,37)(3,38)(4,39)(5,40)(6,41)(7,42)(8,29)(9,30)(10,31)(11,32)(12,33)(13,34)(14,35)(15,45)(16,46)(17,47)(18,48)(19,49)(20,50)(21,51)(22,52)(23,53)(24,54)(25,55)(26,56)(27,43)(28,44), (1,2,3,4,5,6,7,8,9,10,11,12,13,14)(15,16,17,18,19,20,21,22,23,24,25,26,27,28)(29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56), (1,35)(2,34)(3,33)(4,32)(5,31)(6,30)(7,29)(8,42)(9,41)(10,40)(11,39)(12,38)(13,37)(14,36)(15,45)(16,44)(17,43)(18,56)(19,55)(20,54)(21,53)(22,52)(23,51)(24,50)(25,49)(26,48)(27,47)(28,46) );

G=PermutationGroup([[(1,56),(2,27),(3,44),(4,15),(5,46),(6,17),(7,48),(8,19),(9,50),(10,21),(11,52),(12,23),(13,54),(14,25),(16,40),(18,42),(20,30),(22,32),(24,34),(26,36),(28,38),(29,49),(31,51),(33,53),(35,55),(37,43),(39,45),(41,47)], [(1,29),(2,30),(3,31),(4,32),(5,33),(6,34),(7,35),(8,36),(9,37),(10,38),(11,39),(12,40),(13,41),(14,42),(15,22),(16,23),(17,24),(18,25),(19,26),(20,27),(21,28),(43,50),(44,51),(45,52),(46,53),(47,54),(48,55),(49,56)], [(1,36),(2,37),(3,38),(4,39),(5,40),(6,41),(7,42),(8,29),(9,30),(10,31),(11,32),(12,33),(13,34),(14,35),(15,45),(16,46),(17,47),(18,48),(19,49),(20,50),(21,51),(22,52),(23,53),(24,54),(25,55),(26,56),(27,43),(28,44)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14),(15,16,17,18,19,20,21,22,23,24,25,26,27,28),(29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56)], [(1,35),(2,34),(3,33),(4,32),(5,31),(6,30),(7,29),(8,42),(9,41),(10,40),(11,39),(12,38),(13,37),(14,36),(15,45),(16,44),(17,43),(18,56),(19,55),(20,54),(21,53),(22,52),(23,51),(24,50),(25,49),(26,48),(27,47),(28,46)]])

C23⋊D14 is a maximal subgroup of
C7⋊C2≀C4  C23.3D28  C23⋊D28  2+ 1+42D7  C4212D14  D2823D4  C4216D14  C4217D14  D7×C22≀C2  C242D14  C243D14  C24.33D14  C24.34D14  C244D14  C14.372+ 1+4  C4⋊C421D14  C14.382+ 1+4  D2819D4  C14.402+ 1+4  D2820D4  C14.422+ 1+4  C14.462+ 1+4  C14.482+ 1+4  C14.1202+ 1+4  C4⋊C428D14  C14.612+ 1+4  C14.1222+ 1+4  C14.622+ 1+4  C14.682+ 1+4  C4220D14  C4221D14  C4222D14  C4226D14  D2811D4  C4228D14  D4×C7⋊D4  C247D14  (C2×C28)⋊15D4  C14.1452+ 1+4  C14.1462+ 1+4
C23⋊D14 is a maximal quotient of
C24.46D14  C23⋊Dic14  C23.44D28  C24.12D14  C24.14D14  C232D28  (C2×C4)⋊Dic14  D14⋊C46C4  (C2×C4)⋊3D28  C24⋊D14  D2816D4  D2817D4  Dic1417D4  D28.36D4  D28.37D4  Dic14.37D4  C22⋊C4⋊D14  C425D14  D28.14D4  D285D4  D28.15D4  D28⋊D4  Dic14⋊D4  D146SD16  Dic147D4  D287D4  Dic14.16D4  D145Q16  D28.17D4  D2818D4  D28.38D4  D28.39D4  D28.40D4  C24.18D14  C24.21D14

44 conjugacy classes

class 1 2A2B2C2D2E2F2G2H2I2J4A4B4C7A7B7C14A···14I14J···14U28A···28F
order1222222222244477714···1414···1428···28
size111122414141414428282222···24···44···4

44 irreducible representations

dim1111112222224
type++++++++++++
imageC1C2C2C2C2C2D4D4D7D14D14C7⋊D4D4×D7
kernelC23⋊D14D14⋊C4C23.D7C2×C7⋊D4D4×C14C23×D7D14C2×C14C2×D4C2×C4C23C22C2
# reps12121142336126

Matrix representation of C23⋊D14 in GL4(𝔽29) generated by

91600
242000
002828
0001
,
28000
02800
0010
0001
,
1000
0100
00280
00028
,
10800
12100
00280
0021
,
222600
16700
0010
002728
G:=sub<GL(4,GF(29))| [9,24,0,0,16,20,0,0,0,0,28,0,0,0,28,1],[28,0,0,0,0,28,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,1,0,0,0,0,28,0,0,0,0,28],[10,12,0,0,8,1,0,0,0,0,28,2,0,0,0,1],[22,16,0,0,26,7,0,0,0,0,1,27,0,0,0,28] >;

C23⋊D14 in GAP, Magma, Sage, TeX

C_2^3\rtimes D_{14}
% in TeX

G:=Group("C2^3:D14");
// GroupNames label

G:=SmallGroup(224,132);
// by ID

G=gap.SmallGroup(224,132);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-7,218,188,6917]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^14=e^2=1,a*b=b*a,d*a*d^-1=a*c=c*a,e*a*e=a*b*c,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e=d^-1>;
// generators/relations

׿
×
𝔽